Share Email Print
cover

Proceedings Paper

Fuzzy hierarchical approach to odor classification
Author(s): D. Dumitrescu; Beatrice Lazzerini; F. Marcelloni
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A fuzzy logic-based system to classify olfactive signals is presented. The odor samples are obtained from an electronic noise that contains conducting polymer sensors with partially overlapping sensitivities to odors. The sensor responses are represented by means of the coefficients of their Fast Fourier Transform (FFT). A feature reduction method is applied to reduce the feature space dimension. Then, an unsupervised Fuzzy Divisive Hierarchical Clustering (FDHC) method is used to establish the optimal number of clusters in the data set as well as the optimal cluster structure. The output of FDHC is a binary hierarchy of fuzzy classes that are used to build a supervised fuzzy hierarchical classifier. At each level of the fuzzy hierarchy a separating hyperplane of the two corresponding fuzzy training classes is determined. The hyperplane identifies two crisp decision regions, which will be refined at the next level of the hierarchy. In this way, we obtain a hierarchy of regions, which defines a crisp decision tree. Each region is, therefore, related to a specific expected output of the system. Recognition of an unknown odor is accomplished by computing the FFT of the corresponding signal and using the decision tree to establish the region the odor belongs to. Two small-scale applications of the method yielded 100% classification accuracy on out-of-sample data.

Paper Details

Date Published: 22 March 1999
PDF: 12 pages
Proc. SPIE 3728, Ninth Workshop on Virtual Intelligence/Dynamic Neural Networks, (22 March 1999); doi: 10.1117/12.343056
Show Author Affiliations
D. Dumitrescu, Univ. of Pisa (Italy)
Beatrice Lazzerini, Univ. of Pisa (Italy)
F. Marcelloni, Univ. of Pisa (Italy)


Published in SPIE Proceedings Vol. 3728:
Ninth Workshop on Virtual Intelligence/Dynamic Neural Networks
Thomas Lindblad; Mary Lou Padgett; Jason M. Kinser, Editor(s)

© SPIE. Terms of Use
Back to Top