Share Email Print

Proceedings Paper

Usage of the back-propagation method for alphabet recognition
Author(s): R. Naga Shaila Sree; Kumar Eswaran; N. Sundararajan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Artificial Neural Networks play a pivotal role in the branch of Artificial Intelligence. They can be trained efficiently for a variety of tasks using different methods, of which the Back Propagation method is one among them. The paper studies the choosing of various design parameters of a neural network for the Back Propagation method. The study shows that when these parameters are properly assigned, the training task of the net is greatly simplified. The character recognition problem has been chosen as a test case for this study. A sample space of different handwritten characters of the English alphabet was gathered. A Neural net is finally designed taking many the design aspects into consideration and trained for different styles of writing. Experimental results are reported and discussed. It has been found that an appropriate choice of the design parameters of the neural net for the Back Propagation method reduces the training time and improves the performance of the net.

Paper Details

Date Published: 22 March 1999
PDF: 12 pages
Proc. SPIE 3722, Applications and Science of Computational Intelligence II, (22 March 1999); doi: 10.1117/12.342911
Show Author Affiliations
R. Naga Shaila Sree, Bharat Heavy Electricals Ltd. (India)
Kumar Eswaran, Bharat Heavy Electricals Ltd. (India)
N. Sundararajan, Bharat Heavy Electricals Ltd. (India)

Published in SPIE Proceedings Vol. 3722:
Applications and Science of Computational Intelligence II
Kevin L. Priddy; Paul E. Keller; David B. Fogel; James C. Bezdek, Editor(s)

© SPIE. Terms of Use
Back to Top