Share Email Print
cover

Proceedings Paper

Effects of capacitors, resistors, and residual charges on the static and dynamic performance of electrostatically actuated devices
Author(s): Edward K. Chan; Robert W. Dutton
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The important practical and realistic design issues of an electrostatic actuator/positioner with full-gap travel are discussed. Analytic expressions and numerical simulations show that parasitic capacitances, and non-uniform deformation in two and three dimensions influence the range of travel of an electrostatic positioner stabilized by the addition of a series capacitor. The effects of residual charge on electrostatically-actuated devices are described. The dynamic stepping characteristics of the positioner under compressible squeeze-film damping and resistive damping are compared. The physical descriptions of devices being fabricated in the MUMPs process are presented along with 3D simulation results that demonstrate viability.

Paper Details

Date Published: 10 March 1999
PDF: 11 pages
Proc. SPIE 3680, Design, Test, and Microfabrication of MEMS and MOEMS, (10 March 1999); doi: 10.1117/12.341276
Show Author Affiliations
Edward K. Chan, Stanford Univ. (United States)
Robert W. Dutton, Stanford Univ. (United States)


Published in SPIE Proceedings Vol. 3680:
Design, Test, and Microfabrication of MEMS and MOEMS
Bernard Courtois; Wolfgang Ehrfeld; Selden B. Crary; Wolfgang Ehrfeld; Hiroyuki Fujita; Jean Michel Karam; Karen W. Markus, Editor(s)

© SPIE. Terms of Use
Back to Top