Share Email Print

Proceedings Paper

Optical pressure sensor head fabrication using ultrathin silicon wafer anodic bonding
Author(s): Michael H. Beggans; Dentcho I. Ivanov; Steven G. Fu; Thomas G. Digges III; Kenneth R. Farmer
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A technology for fabricating fiber optically interrogated pressure sensors is described. This technology is based on anodic bonding of ultra-thin silicon wafers to patterned, micro-machined glass wafers, providing low-cost fabrication of optical pressure sensor heads that operate with reproducible technical characteristics in various dynamic ranges. Pressure sensors using 10, 20 and 50 micron thick silicon wafers for membranes have been fabricated on 10 cm diameter, 500-micron thick, Pyrex glass wafers. The glass wafers have been micro-machined using ultrasonic drilling in order to form cavities, optical fiber feedthrough holes and vent holes. One of the main challenges of the manufacturing process is the handling of the ultra-thin silicon wafers. Being extremely flexible, the thin silicon wafers cannot be cleaned, oxidized, or dried in the same way as normal since wafers with a thickness of the order of 400 microns. Specific handling techniques have been developed in order to achieve reproducible cleaning and oxidation processes. The anodic bonding was performed using an Electronic Visions EV501S bonder. The wafers were heated at 420 degrees C and a voltage of 1200 volts was applied in vacuum of 10-5 Torr. The bonded wafer stack was then fixed in a wax and diced. The resulting chips have been used to fabricate operating pressure sensors.

Paper Details

Date Published: 10 March 1999
PDF: 10 pages
Proc. SPIE 3680, Design, Test, and Microfabrication of MEMS and MOEMS, (10 March 1999); doi: 10.1117/12.341272
Show Author Affiliations
Michael H. Beggans, New Jersey Institute of Technology (United States)
Dentcho I. Ivanov, New Jersey Institute of Technology (United States)
Steven G. Fu, Inertia Optical Technology Applications, Inc. (United States)
Thomas G. Digges III, Virginia Semiconductor, Inc. (United States)
Kenneth R. Farmer, New Jersey Institute of Technology (United States)

Published in SPIE Proceedings Vol. 3680:
Design, Test, and Microfabrication of MEMS and MOEMS
Bernard Courtois; Wolfgang Ehrfeld; Selden B. Crary; Wolfgang Ehrfeld; Hiroyuki Fujita; Jean Michel Karam; Karen W. Markus, Editor(s)

© SPIE. Terms of Use
Back to Top