Share Email Print

Proceedings Paper

Detection of carbon-fluorine bonds in organofluorine compounds by Raman spectroscopy using a copper-vapor laser
Author(s): Clay M. Sharts; Vladimir S. Gorelik; A. M. Agoltsov; Ludmila I. Zlobina; Olga N. Sharts
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Raman spectra of fluoro-organic compounds show specific emission bands for carbon-fluorine bonds in the range 500- 800 wave numbers (cm-1)). With very limited exceptions, biological materials do not contain carbon- fluorine bonds. Fluoro-organic compounds introduced into biological samples can be detected by a Raman emission signal. Normal mode C-F bond bands are observed: (1) at 710- 785 cm -1 for trifluoromethyl groups; (2) at 530-610 cm -1 for aromatic organofluorine bonds; (3) a range centered at 690 cm -1 for difluoromethylene groups. Specific examples of normal mode C-F bond emissions for organofluorine compounds containing trifluoromethyl groups are: 1-bromoperfluorooctane, 726 cm -1; perfluorodecanoic acid, 730 cm -1; triperfluoropropylamine, 750 cm -1; 1,3,5-tris- (trifluoromethyl)-benzene, 730 cm -1; Fluoxetine (Prozac) commercial powdered pill at 782 cm -1. Compounds containing aromatic C-F bonds are: hexafluorobenzene, 569 cm MIN1; pentafluoropyridine, 589 cm -1. Difluoromethylene groups: perfluorodecalin, 692 cm-1; perfluorocyclohexane, 691 cm -1. Raman spectra were observed with a standard single monochromator. The 510.8 nm light source was a copper-vapor laser operated at 3-10 watts with 10-12 nanosecond pulses at 10 kHz repetition rate. Detection was made with a time-gated photomultiplier tube. Resonance Raman spectra were also observed at 255.4 nm, using a frequency doubling crystal. Observed spectra were free of fluorescence with very sharp strong C-F lines.

Paper Details

Date Published: 26 February 1999
PDF: 10 pages
Proc. SPIE 3537, Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring, (26 February 1999); doi: 10.1117/12.341046
Show Author Affiliations
Clay M. Sharts, California State Univ./San Diego (United States)
Vladimir S. Gorelik, P.N. Lebedev Physical Institute (Russia)
A. M. Agoltsov, P.N. Lebedev Physical Institute (Russia)
Ludmila I. Zlobina, P.N. Lebedev Physical Institute (Russia)
Olga N. Sharts, California State Univ./San Diego (United States)

Published in SPIE Proceedings Vol. 3537:
Electro-Optic, Integrated Optic, and Electronic Technologies for Online Chemical Process Monitoring
Mahmoud Fallahi; Mahmoud Fallahi; Robert J. Nordstrom; Terry R. Todd, Editor(s)

© SPIE. Terms of Use
Back to Top