Share Email Print
cover

Proceedings Paper

Low-cycle fatigue/high-cycle fatigue (LCF/HCF) interaction studies using a 10- to 40-kHz HCF loading device
Author(s): Theodore E. Matikas
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

To simulate the testing conditions experienced by aircraft engine turbine blades, a new experimental facility was developed capable of providing interactive low cycle fatigue (LCF)/high cycle fatigue (HCF) loading. The new facility is based on a HCF cell that can operate in the 10-40 kHz frequency range. This HCF testing cell can also be interfaced to a servo-hydraulic load frame, which provides a second fatigue cycle. Sample geometry is critical for the HCF cell to produce the desired applied load on the specimen. The objective of this research is to develop analytical modeling necessary for the design of test coupons to be used in the new HCF testing cell operating at ultrasonic frequencies, and also to demonstrate the capabilities of the new device by performing LCF/HCF interaction studies in Ti-6Al-4V. The results of these studies clearly showed the effect of the HCF component of the load in spite the fact that the HCF component was only 15-19 percent of the overall load. It was also found that the HCF component of the load was the major cause of observed damage with the LCF component having much less effect. Eliminating the HCF component completely resulted in increasing the fatigue life at least an order of magnitude.

Paper Details

Date Published: 8 February 1999
PDF: 9 pages
Proc. SPIE 3585, Nondestructive Evaluation of Aging Materials and Composites III, (8 February 1999); doi: 10.1117/12.339837
Show Author Affiliations
Theodore E. Matikas, Univ. of Dayton (United States)


Published in SPIE Proceedings Vol. 3585:
Nondestructive Evaluation of Aging Materials and Composites III
George Y. Baaklini; Carol A. Nove; Eric S. Boltz, Editor(s)

© SPIE. Terms of Use
Back to Top