Share Email Print
cover

Proceedings Paper

200-kV active optical fiber voltage transformer
Author(s): Yan Xu; Sunan Luo; Miaoyuan Ye
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The report describes a 220kV Active Optical Fiber Voltage Transformer (AOVT). The transformer is different from the passive optical fiber voltage transformer, for no optical crystal is used in the 220kV AOVT. Its principle is that a low voltage is divided for the 220kV high voltage by a capacitive divider and then is converted into a digital signal. The optical fiber is used to transfer the measured digital signal and control signal. The 220kV AOVT consists of an outdoors-high voltage measurement unit and an indoors low voltage metering and controlling unit. The optical fiber connects these units. The low voltage is effectively isolated from the high voltage by means of the optical fiber and a special power supply method which is specially designed for the outdoor high voltage unit. As a result, the safe protection is reliable for the indoor low voltage equipment and the operation staff. Compared to the conventional voltage transformer, the advantages of the 220kV AOVT are high accuracy, low cost, excellent dynamic characteristics and immunity from electromagnetic interference. The 220kV AOVT has been tested, and its accuracy could achieve +/- 0.2 percent.

Paper Details

Date Published: 3 February 1999
PDF: 8 pages
Proc. SPIE 3541, Fiber Optic and Laser Sensors and Applications; Including Distributed and Multiplexed Fiber Optic Sensors VII, (3 February 1999); doi: 10.1117/12.339111
Show Author Affiliations
Yan Xu, Huazhong Univ. of Science and Technology (China)
Sunan Luo, Huazhong Univ. of Science and Technology (China)
Miaoyuan Ye, Huazhong Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 3541:
Fiber Optic and Laser Sensors and Applications; Including Distributed and Multiplexed Fiber Optic Sensors VII
Alan D. Kersey; John P. Dakin; John P. Dakin; Alan D. Kersey; Dilip K. Paul, Editor(s)

© SPIE. Terms of Use
Back to Top