Share Email Print

Proceedings Paper

Monitoring system for the study of autotrophic biofilms in bioremediation of polyaromatic compounds
Author(s): Jean Pierre Alarie; A. Bruttig; Gordon H. Miller; Walter Hill; Tuan Vo-Dinh
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Bacterial and other natural materials such as plants and algae have received increasing interest for bioremediation efforts. The identificatIon of materials capable of biodegrading or sequestering environmental pollutants offers an attractive alternative to chemical or physical means of remediation. A number of bacteria capable of biodegrAding organic or reducing metal pollutants have received great interest. Similarly, the use of natural plants to absorb pollutants from soil anD liquid samples is another potential approach. Our interest lies in identification of naturally occurring algae and their ability to absorb polyaromatic compounds (PAC) from groundwater sources (i.e. streams). These algae could serve as natural water filters for streams contaminated with Polyaromatic hydrocarbons. Polycyclic aromatic compounds, which comprise a complex class of condensed multi-ring benzenoid compounds, are important environmental pollutants originating from a wide variety of natural and anthropogenic sources. PACs are generally formed during incomplete combustion or pyrolysis of organic matter containing carbon and hydrogen. Because combustion of organic materials is involved in countless natural processes or human activities, PACs are omnipresent and abundant pollutants in air, soil and water. Among energy-related products, fossil fuels are the major sources of PACs. The primary sources of airborne PACs are associated with combustion, coal coking, and petroleum catalytic cracking. Coal and shale conversion also contribute to production of PACs. Production, transportation and, use of synthetic fuels and petroleum products provide emission sources for PACs. In urban environments an significant source of PACs is diesel exhaust. Food cooking and cigarette smoking activities contribute to PAC occurrence in indoor environments. Chemical analysis of PACs is of great environmental and toxicological interest because many of them have been shown to be mutagens and/or potent carcinogens in laboratory animal assays. The parent homocyclic species, which contain only carbon and hydrogen, are the familiar polyaromatic hydrocarbon (PAH) compounds. In addition to the PAH compounds, there are thousands of substituted compounds that could have various substituent groups, such as alkyl, amino, chloro, cyano, hydroxy, oxy, or thio groups. In this study we investigate anthracene and pyrene as PAH model systems. A portable fiberoptic instrument capable of real-time measurements has been developed for field screening these PAHs in surface water and natural algae systems. Our preliminary studies investigated the detection limits of anthracene and pyrene and the adsorption properties of two algae using fluorescence monitoring. An exposure study of the algae to 5 ppb anthracene was performed to investigate the ability of the algae to adsorb PAHs.

Paper Details

Date Published: 10 February 1999
PDF: 7 pages
Proc. SPIE 3534, Environmental Monitoring and Remediation Technologies, (10 February 1999); doi: 10.1117/12.339048
Show Author Affiliations
Jean Pierre Alarie, Oak Ridge National Lab. (United States)
A. Bruttig, Oak Ridge National Lab. (United States)
Gordon H. Miller, Oak Ridge National Lab. (United States)
Walter Hill, Oak Ridge National Lab. (United States)
Tuan Vo-Dinh, Oak Ridge National Lab. (United States)

Published in SPIE Proceedings Vol. 3534:
Environmental Monitoring and Remediation Technologies
Tuan Vo-Dinh; Robert L. Spellicy, Editor(s)

© SPIE. Terms of Use
Back to Top