Share Email Print
cover

Proceedings Paper

Real-time weed detection in outdoor field conditions
Author(s): Brian L. Steward; Lei F. Tian
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Though most herbicide is applied uniformly in agronomic fields, there is strong evidence that weeds are not distributed uniformly within the crop fields. If an effective weed detection system were developed, both economic and environmental benefits would result from its use for site-specific weed management. Past work in this area has focused mainly on either low spatial resolution photo-detectors or off-line machine vision system. This study was undertaken to develop real-time machine vision weed detection for outdoor lighting conditions. The novel environmentally adaptive segmentation algorithm was developed with the objective of real-time operation on an on-board computer-based system. The EASA used cluster analysis to group pixels of homogeneous color regions of the image together which formed the basis for image segmentation. The performance of several variations of this algorithm was measured by comparing segmented field images produced by the EASA, fixed-color HSI region segmentation, and ISODATA clustering with hand-=segmented reference images. The time cost and questionable accuracy of hand- segmented reference images led to exploration of the use of computer-segmented reference images. Sensitivity and background sensitivity were used as performance measured. Significant differences were found between the means of sensitivity, background sensitivity, and overall performance across segmentation schemes. Similar results were obtained with computer-segmented reference images.

Paper Details

Date Published: 14 January 1999
PDF: 13 pages
Proc. SPIE 3543, Precision Agriculture and Biological Quality, (14 January 1999); doi: 10.1117/12.336890
Show Author Affiliations
Brian L. Steward, Univ. of Illinois/Urbana-Champaign (United States)
Lei F. Tian, Univ. of Illinois/Urbana-Champaign (United States)


Published in SPIE Proceedings Vol. 3543:
Precision Agriculture and Biological Quality
George E. Meyer; James A. DeShazer, Editor(s)

© SPIE. Terms of Use
Back to Top