Share Email Print

Proceedings Paper

Thermodynamics of strongly correlated electrons in a three-band model
Author(s): Denis Karl Sunko
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Strongly correlated electrons in copper oxide planes are modeled by a random tiling of CuO4 molecules at finite temperatures. This model is a non-perturbative extension of Gutzwiller's variational assumption. An effective one-particle theory is constructed through the use of a combinatorial transform to express the problem in momentum space, without averaging over occupation numbers in real space. Temporal correlations are lost, because of the Gutzwiller approximation, implemented by taking one kind of spins to be static. Thermodynamic functions can be computed at any temperature and filling. A Mott-Hubbard transition is found in doping, but cannot be crossed in temperature. The effective Fermi liquid can be strongly renormalized, though it does not break down. In the derivation of the model, a formal connection between projected hopping and pair confinement is established.

Paper Details

Date Published: 22 December 1998
PDF: 9 pages
Proc. SPIE 3481, Superconducting and Related Oxides: Physics and Nanoengineering III, (22 December 1998); doi: 10.1117/12.335869
Show Author Affiliations
Denis Karl Sunko, Univ. of Zagreb (Croatia)

Published in SPIE Proceedings Vol. 3481:
Superconducting and Related Oxides: Physics and Nanoengineering III
Davor Pavuna; Ivan Bozovic, Editor(s)

© SPIE. Terms of Use
Back to Top