Share Email Print
cover

Proceedings Paper

Improved H.263 video codec with motion-based frame interpolation
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A fast block-based motion frame interpolation (FMCI) and an adaptive frame skipping scheme (AFS) are proposed for the H.263/H.263+ decoder and encoder, respectively, in this research. The proposed FMCI decoder can successfully interpolate non-coded frames so that a video clip with skipped frames can be played without jerkiness. In the FMCI decoder, the block-based motion fields from the encoder are directly utilized to generate interpolated frames without performing further motion search. Thus, the computational complexity of the interpolation operation is significantly saved. With AFS, the encoder can adaptively choose the frame skip number based on the prediction result of the embedded FMCI. AFS generates a bit stream with a variable frame rate, which can increase the coding efficiency and enhance the performance of the FMCI interpolation at the decoder. FMCI works with any bit stream generated by the standard H.263/H.263+ encoder with or without incorporating AFS.

Paper Details

Date Published: 28 December 1998
PDF: 12 pages
Proc. SPIE 3653, Visual Communications and Image Processing '99, (28 December 1998); doi: 10.1117/12.334679
Show Author Affiliations
Tien-Ying Kuo, Univ. of Southern California (Taiwan)
C.-C. Jay Kuo, Univ. of Southern California (United States)


Published in SPIE Proceedings Vol. 3653:
Visual Communications and Image Processing '99
Kiyoharu Aizawa; Robert L. Stevenson; Ya-Qin Zhang, Editor(s)

© SPIE. Terms of Use
Back to Top