Share Email Print
cover

Proceedings Paper

Multiwavelength shearography for evaluation of in-plane strain distributions
Author(s): Ralf Kaestle; Erwin K. Hack; Urs J. Sennhauser
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We report on a novel set-up using image shearing speckle pattern interferometry for the determination of 2D strain distributions of an object surface. This system is based on simultaneous illumination of the object with three diode lasers that emit at different wavelengths between 810 nm and 850 nm. Their speckle images are separated within the shearographic set-up, consisting of a variable shear element, a special color separation optics and 3 b/w CCD cameras, in such a way that each camera records the speckle image corresponding to one laser source only. The shearographic camera in combination with the appropriate illumination geometry allowed us to isolate all six displacement derivatives from phase stepped fringe patterns. The good suitability and accuracy of the system for the determinant of 2D strain distributions are demonstrated on the basis of shearographic measurements during tensile and comparison with strain gage measurements.

Paper Details

Date Published: 29 December 1998
PDF: 6 pages
Proc. SPIE 3520, Three-Dimensional Imaging, Optical Metrology, and Inspection IV, (29 December 1998); doi: 10.1117/12.334338
Show Author Affiliations
Ralf Kaestle, Swiss Federal Labs. for Materials Testing and Research (Switzerland)
Erwin K. Hack, Swiss Federal Labs. for Materials Testing and Research (Switzerland)
Urs J. Sennhauser, Swiss Federal Labs. for Materials Testing and Research (Switzerland)


Published in SPIE Proceedings Vol. 3520:
Three-Dimensional Imaging, Optical Metrology, and Inspection IV
Kevin G. Harding; Donald J. Svetkoff; Katherine Creath; James S. Harris, Editor(s)

© SPIE. Terms of Use
Back to Top