Share Email Print
cover

Proceedings Paper

Comparing texture feature sets for retrieving core images in petroleum applications
Author(s): Chung-Sheng Li; John R. Smith; Vittorio Castelli; Lawrence D. Bergman
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, the performance of similarity retrieval from a database of earth core images by using different sets of spatial and transformed-based texture features is evaluated and compared. A benchmark consisting of 69 core images from rock samples is devised for the experiments. We show that the Gabor feature set is far superior to other feature sets in terms of precision-recall for the benchmark images. This is in contrast to an earlier report by the authors in which we have observed that the spatial-based feature set outperforms the other feature sets by a wide margin for a benchmark image set consisting of satellite images when the evaluation window has to be small (32 X 32) in order to extract homogenous regions. Consequently, we conclude that optimal texture feature set for texture feature-based similarity retrieval is highly application dependent, and has to be carefully evaluated for each individual application scenario.

Paper Details

Date Published: 17 December 1998
PDF: 10 pages
Proc. SPIE 3656, Storage and Retrieval for Image and Video Databases VII, (17 December 1998); doi: 10.1117/12.333828
Show Author Affiliations
Chung-Sheng Li, IBM Thomas J. Watson Research Ctr. (United States)
John R. Smith, IBM Thomas J. Watson Research Ctr. (United States)
Vittorio Castelli, IBM Thomas J. Watson Research Ctr. (United States)
Lawrence D. Bergman, IBM Thomas J. Watson Research Ctr. (United States)


Published in SPIE Proceedings Vol. 3656:
Storage and Retrieval for Image and Video Databases VII
Minerva M. Yeung; Boon-Lock Yeo; Charles A. Bouman, Editor(s)

© SPIE. Terms of Use
Back to Top