Share Email Print

Proceedings Paper

High-resolution near-field mask repair with femtosecond laser
Author(s): Yosi Shani; Ian Melnik; Sasha Yoffe; Yuval Sharon; Klony S. Lieberman; Hanan Terkel
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Nanonics Lithography has demonstrated in the past a mask repair system based on near field optical technology. The basic system consisted of: (1) Near Field sub system -- Including a Near Field Head and the Near Field Optical Aperture (micro-pipette). (2) An X-Y stage with nanometer level accuracy, resolution and repeatability. (3) A doubled Nd:YAG laser for high resolution Near Field Optical Imaging, beyond the diffraction limits of the YAG laser. (4) A Nano- Second (NS) pulse width Arf Excimer laser for ablation of the Cr defect. The repairs performed with the system based on the above configuration suffered from inherent quality problems of Cr removal homogeneity and quartz substrate penetration. This is due to the relatively long duration of the NS pulse, in which the Cr is ablated by melting and evaporating the film accompanied by significant heat diffusion to the surrounding material. In order to improve the repair quality, we have introduced a Femto Second (FS) laser as the ablation source. In the FS regime the metal is evaporated within a time frame that does not allow heat diffusion to the surrounding material. The resultant cut in the metal is clean, without deposition on the edges and with a very limited effect on the substrate. In this paper, we will discuss the interaction of FS pulses with thin metal films and the integration issues of such a laser with Near Field optics. Cr and CrO ablation results of a programmed defect on masks will be presented. Clean homogeneous repairs of Cr. opaque defects with sharp edges and with minimal (less than 10 - 20 nm) Quartz penetration are also shown. Molten material at the line edge, which was common with the NS laser ablation, is also avoided with the FS laser ablation. The resulting mask repair system provides enhanced Cr. and CrO removal without deposition on the edge and with minimal Quartz effect.

Paper Details

Date Published: 18 December 1998
PDF: 9 pages
Proc. SPIE 3546, 18th Annual BACUS Symposium on Photomask Technology and Management, (18 December 1998); doi: 10.1117/12.332815
Show Author Affiliations
Yosi Shani, Nanonics Lithography Ltd. (Israel)
Ian Melnik, Nanonics Lithography Ltd. (Israel)
Sasha Yoffe, Nanonics Lithography Ltd. (Israel)
Yuval Sharon, Nanonics Lithography Ltd. (Israel)
Klony S. Lieberman, Nanonics Lithography Ltd. (Israel)
Hanan Terkel, Nanonics Lithography Ltd. (Israel)

Published in SPIE Proceedings Vol. 3546:
18th Annual BACUS Symposium on Photomask Technology and Management
Brian J. Grenon; Frank E. Abboud, Editor(s)

© SPIE. Terms of Use
Back to Top