Share Email Print
cover

Proceedings Paper

Generalized orthogonal subspace projection approach to multispectral image classification
Author(s): Hsuan Ren; Chein-I Chang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Orthogonal subspace projection (OSP) has been successfully applied to hyperspectral image processing. In order for OSP to be effective, the number of bands must be no less than that of signatures to be classified so that there are sufficient dimensions to accommodate individual signatures to discriminate one another via orthogonal projection. This intrinsic constraint is not an issue for hyperspectral images since they generally have hundreds of bands which are more than the number of signatures resident within images. It, however, may not be true for multispectral images where the number of signatures to be classified is greater than the number of bands such as 3-band SPOT images. This paper presents a generalization of OSP, called generalized OSP (GOSP) to relax this constraint in such a fashion that OSP can be extended to multispectral image processing in an unsupervised fashion. The idea of GOSP is to create new additional band images nonlinearly from original multispectral images so as to achieve sufficient dimensionality prior to OSP classification. It is then followed by an unsupervised OSP classifier, called automatic target detection and classification algorithm (ATDCA) for classification. The effectiveness of the proposed GOSP is evaluated by a 3-band SPOT and a 4-band Landsat MSS images. The experimental results has shown that GOSP significantly improves the classification performance of OSP.

Paper Details

Date Published: 4 December 1998
PDF: 12 pages
Proc. SPIE 3500, Image and Signal Processing for Remote Sensing IV, (4 December 1998); doi: 10.1117/12.331896
Show Author Affiliations
Hsuan Ren, Univ. of Maryland/Baltimore County (United States)
Chein-I Chang, Univ. of Maryland/Baltimore County (United States)


Published in SPIE Proceedings Vol. 3500:
Image and Signal Processing for Remote Sensing IV
Sebastiano Bruno Serpico, Editor(s)

© SPIE. Terms of Use
Back to Top