Share Email Print
cover

Proceedings Paper

Photorefractivity in polymer-stabilized nematic liquid crystals
Author(s): Gary P. Wiederrecht; Michael R. Wasielewski
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Polymer-stabilized liquid crystals, consisting of low concentrations of a polymeric electron acceptor, are shown to exhibit significantly enhanced photorefractive properties. The charge generation and transport properties of these composite systems are strongly modified from nematic liquid crystals doped with electron donors and acceptors. The new composites are produced by polymerizing a small quantity of a 1,4:5,8-naphthalenediimide electron acceptor functionalized with an acrylate group in an aligned nematic liquid crystal. Photopolymerization creates an anisotropic gel-like medium in which the liquid crystal is free to reorient in the presence of a space charge field, while maintaining charge trapping sites in the polymerized regions of the material. The presence of these trapping sites results in the observation of longer lived, higher resolution holographic gratings in the polymer-stabilized liquid crystals than observed in nematic liquid crystals alone. These gratings display Bragg regime diffraction. Asymmetric beam coupling, photo-conductivity, and four-wave mixing experiments are performed to characterize the photophysics of these novel materials.

Paper Details

Date Published: 23 October 1998
PDF: 8 pages
Proc. SPIE 3471, Xerographic Photoreceptors and Organic Photorefractive Materials IV, (23 October 1998); doi: 10.1117/12.328153
Show Author Affiliations
Gary P. Wiederrecht, Argonne National Lab. (United States)
Michael R. Wasielewski, Argonne National Lab. and Northwestern Univ. (United States)


Published in SPIE Proceedings Vol. 3471:
Xerographic Photoreceptors and Organic Photorefractive Materials IV
Stephen Ducharme; James W. Stasiak; James W. Stasiak, Editor(s)

© SPIE. Terms of Use
Back to Top