Share Email Print
cover

Proceedings Paper

III-V semiconductor quantum well and superlattice detectors
Author(s): Martin Walther; Frank Fuchs; Harald Schneider; Joachim Fleissner; J. Schmitz; Wilfried Pletschen; Juergen Braunstein; Johann Ziegler; Wolfgang A. Cabanski; Peter Koidl; Guenter Weimann
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The paper reviews the development of IR detectors for the 8 - 12 micrometer wavelength range based on GaAs/AlGaAs quantum well structures and InAs/(GaIn)Sb short-period superlattices (SPSLs) at the Fraunhofer-Institute IAF. Photoconductive GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) are used for the fabrication of starring IR cameras for thermal imaging in the third atmospheric window. The long wavelength infrared (LWIR) camera, devleoped in cooperation with AEG Infrarot-Module (AIM), consists of a two-dimensional focal plane array (FPA) with 256 X 256 detector elements, flip- chip bonded to a read-out integrated circuit (ROIC). The technology for the fabrication of FPAs, electrical and optical properties of single detector elements in the two-dimensional arrangement and the properties of the LWIR camera system are reported. A noise equivalent temperature difference (NETD) below 10 mK has been measured at an operation temperature of T equals 65 K with an integration time of 20 ms. More than 99.8% of all pixels are working and no cluster defects are observed. InAs/(GaIn)Sb SPSLs with a broken gap type-II band alignment are well suited for the fabrication of IR detectors covering the 3 - 12 micrometer spectral range. Due to the lattice mismatch of the InAs/(GaIn)Sb SPSL with respect to GaSb, tight control of thickness and composition of the layers and a controlled formation of the chemical bonds across the interface in the SPSLs are used for strain compensation. Photodiodes with a cut-off wavelength (lambda) c equals 8 micrometer and a current responsivity R(lambda ) equals 2 A/W exhibit a dynamic impedance of R0A equals 1k(Omega) cm2 at T equals 77 K. This leads to a Johnson- noise limited detectivity in excess of D* equals 1 X 1012 cm(Hz)1/2/W for these type of detectors.

Paper Details

Date Published: 26 October 1998
PDF: 11 pages
Proc. SPIE 3436, Infrared Technology and Applications XXIV, (26 October 1998); doi: 10.1117/12.328032
Show Author Affiliations
Martin Walther, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
Frank Fuchs, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
Harald Schneider, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
Joachim Fleissner, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
J. Schmitz, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
Wilfried Pletschen, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
Juergen Braunstein, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
Johann Ziegler, AEG Infrarot-Module GmbH (Germany)
Wolfgang A. Cabanski, AEG Infrarot-Module GmbH (Germany)
Peter Koidl, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)
Guenter Weimann, Fraunhofer-Institut fuer Angewandte Festkoerperphysik (Germany)


Published in SPIE Proceedings Vol. 3436:
Infrared Technology and Applications XXIV
Bjorn F. Andresen; Marija Strojnik, Editor(s)

© SPIE. Terms of Use
Back to Top