Share Email Print

Proceedings Paper

Efficient multisensor fusion using multidimensional assignment for multitarget tracking
Author(s): Thiagalingam Kirubarajan; Hao Wang; Yaakov Bar-Shalom; Krishna R. Pattipati
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In this paper we present the development of a multisensor fusion algorithm using multidimensional data association for multitarget tracking. The work is motivated by a large scale ground target surveillance problem, where observations from multiple asynchronous sensors with time-varying sampling intervals (e.g., electronically scanned array radars) are used for centralized fusion. The combination of multisensor fusion with multidimensional assignment is done such as to maximize the 'time-depth,' in addition to 'sensor-width' for the number S of lists handled by the assignment algorithm. The time-depth results from the simultaneous use of multiple frames of measurements obtained at different time instants. The sensor- width comes from the geographically distributed nature of the sensors. A procedure, which guarantees maximum effectiveness for an S-dimensional data association (S greater than or equal to 3), i.e., maximum time-depth (S-1) for each sensor without sacrificing the fusion across sensors, is presented. Using a sliding-window technique (of length S), the estimates are updated after each frame of measurements. The algorithm provides a systematic approach to automatic track formation, maintenance and termination for multitarget tracking using multisensor fusion with multidimensional assignment for data association. Estimation results are presented for simulated data.

Paper Details

Date Published: 17 July 1998
PDF: 12 pages
Proc. SPIE 3374, Signal Processing, Sensor Fusion, and Target Recognition VII, (17 July 1998); doi: 10.1117/12.327101
Show Author Affiliations
Thiagalingam Kirubarajan, Univ. of Connecticut (Canada)
Hao Wang, Univ. of Connecticut (United States)
Yaakov Bar-Shalom, Univ. of Connecticut (United States)
Krishna R. Pattipati, Univ. of Connecticut (United States)

Published in SPIE Proceedings Vol. 3374:
Signal Processing, Sensor Fusion, and Target Recognition VII
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top