Share Email Print
cover

Proceedings Paper

Complementary data fusion in guidance and control of robot compliant motion
Author(s): Di Xiao; Bijoy K. Ghosh; Ning Xi; Tzyh-Jong Tarn
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper is devoted to the control problem of a robot manipulator for a class of constrained motions in an unknown environment. To accomplish a task in the presence of uncertainties, we propose a new guidance and control strategy based on multisensor fusion. Three different sensors-robot joint encoders, a wrist force-torque sensor and a vision system--are utilized for our task. First of all, a sensor-based hybrid position/force control scheme is proposed for an unknown contact surface. Secondly, a new multisensor fusion scheme is utilized to handle an uncalibrated workcell, wherein the surface on which there is a path to be followed by a robot is assumed to be unknown but visible by the vision system and the precise position and orientation of camera(s) with respect to the base frame of the robot is also assumed to be unknown. Our work is related with areas such as visual servoing, multisensor fusion and robot control for constrained motion. The main features of the proposed approach are: (1) multi-sensor fusion is used both for two disparate sensors (i.e. force- torque and visual sensors) and for complementary observed data rather than redundant ones as in traditional way; (2) visual servoing is realized on the tangent space of the unknown surface; (3) calibration of the camera with respect to the robot is not needed.

Paper Details

Date Published: 9 October 1998
PDF: 12 pages
Proc. SPIE 3523, Sensor Fusion and Decentralized Control in Robotic Systems, (9 October 1998); doi: 10.1117/12.327006
Show Author Affiliations
Di Xiao, FANUC Robotics North America, Inc. (United States)
Bijoy K. Ghosh, Washington Univ. (United States)
Ning Xi, Michigan State Univ. (United States)
Tzyh-Jong Tarn, Washington Univ. (United States)


Published in SPIE Proceedings Vol. 3523:
Sensor Fusion and Decentralized Control in Robotic Systems
Paul S. Schenker; Gerard T. McKee, Editor(s)

© SPIE. Terms of Use
Back to Top