Share Email Print

Proceedings Paper

Soft classifications for the mapping of land cover from remotely sensed data
Author(s): Giles M. Foody
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Image classification used in mapping land cover form remotely sensed data are frequently described as being 'hard' of 'soft' yet in reality such a simple distinction is not observed and a continuum of classification softness can be defined. Using airborne sensors or imagery of two test sites in South Wales, classifications at different points along this continuum with a feedforward neural network are illustrated. It is shown that soft classification can provide a better and more accurate representation of both discrete and continuous land cover classes, resolving in particular problems associated with mixed pixels. Classifications produced at different positions along the continuum of classification softness, however, differed markedly in the representation of land cover distribution and accuracy, highlighting the need to recognize the existence of the continuum and its implications for land cover mapping from remotely sensed data. The results also highlight that the use of a soft or fuzzy classifier is only a partial solution to the mixed pixel problem; a full solution requires refinement of the training and testing stages and methods for this are discussed. Despite an ability to accommodate for the effects of mixed pixels on each of the three stages of supervised image classifications, other factors can degraded classification quality. One important issue is the presence of untrained classes. It is hon, however, that the effect of untrained classes can be reduced with the use of additional information on the typicality of class membership that can be derived form some soft classifications.

Paper Details

Date Published: 13 October 1998
PDF: 12 pages
Proc. SPIE 3455, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation, (13 October 1998); doi: 10.1117/12.326720
Show Author Affiliations
Giles M. Foody, Univ. of Southampton (United Kingdom)

Published in SPIE Proceedings Vol. 3455:
Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation
Bruno Bosacchi; David B. Fogel; James C. Bezdek, Editor(s)

© SPIE. Terms of Use
Back to Top