Share Email Print

Proceedings Paper

Diffraction of light by 3D hexagonal phase gratings: applications for robotic color vision
Author(s): Margarita A. Carbon
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Diffraction of light by 3D phase grating layers could be effectively used for color image processing in robotic vision. Gratings with hexagonal close-packed structures have the maximum amount of cells per volume unit, which leads to an advantage for color image processing. Using the 4D spectral method, we solve the wave equation for diffraction of light by a 3D hexagonal phase grating layer of spherical particles. Both ABCA and ABAB structures are considered. Distribution of diffracted light intensity is calculated in the Fraunhofer and Fresnel diffraction zones. For particular grating distances, the incident white light diffracts in three spatially separated maximums with the central wavelengths corresponding to the three primary colors. The wavelength dependence of diffracted light intensity, for incident white light, is calculated for the three maximums. In general case, by using these three primary curves one can reconstruct the color of incident light from corresponding values of light intensities measured in the three diffracted maximums. The conditions for self-imaging of 3D grating layers are formulated and investigated. Intensity distributions for diffracted light in planes of positive and negative self-imaging, and in a plane of lowest contrast are computed.

Paper Details

Date Published: 6 October 1998
PDF: 13 pages
Proc. SPIE 3522, Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision, (6 October 1998); doi: 10.1117/12.325799
Show Author Affiliations
Margarita A. Carbon, Boeing North America (United States)

Published in SPIE Proceedings Vol. 3522:
Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision
David P. Casasent, Editor(s)

© SPIE. Terms of Use
Back to Top