Share Email Print
cover

Proceedings Paper

Genetic feature selection for highly accurate stereo reconstruction of natural surfaces
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

One approach to stereo matching is to use different local features to find correspondences. The selection of an optimum feature set is the content of this paper. An operational software tool based on the principle of comparing feature vectors is used for stereo matching. A relatively large set of different local features is sought for optimum combinations of 6 - 10 of them. This is done by a genetic process that uses an intrinsic quality criterion that evaluates the correctness of each individual match. The convergence of the genetic feature selection process is demonstrated on a real stereo pair of a tunnel surface. Four areas were used for individual optimization. After several hundred generations for each of the areas, it is shown that the identified feature sets result in a considerably better stereo matching result than the currently used features, which were the result of an initial manual choice. The experiments described in this paper use a `super-set' of 145 features for every pixel, which are created by filtering the image with convolution kernels (averaging, Gaussian filters, bandpass, highpass), median filters and Gabor kernels. From these 145 filters, the genetic feature selection process selects an optimal set of operators. Using the selected filters results in a 15% improvement of the matching accuracy and robustness.

Paper Details

Date Published: 6 October 1998
PDF: 12 pages
Proc. SPIE 3522, Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision, (6 October 1998); doi: 10.1117/12.325791
Show Author Affiliations
Gerhard Paar, Joanneum Research Institute (Austria)
Oliver Sidla, Joanneum Research Institute (Austria)
Wolfgang Poelzleitner, Sensotech GmbH and Technische Univ. Graz (Austria)


Published in SPIE Proceedings Vol. 3522:
Intelligent Robots and Computer Vision XVII: Algorithms, Techniques, and Active Vision
David P. Casasent, Editor(s)

© SPIE. Terms of Use
Back to Top