Share Email Print

Proceedings Paper

Multichannel quantification of biomedical magnetic resonance spectroscopic signals
Author(s): Leen Vanhamme; Sabine Van Huffel
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Quantification of individual magnetic resonance spectroscopy (MRS) signals modeled as a sum of exponentially damped sinusoids, is possible using interactive nonlinear least-squares fitting methods which provide maximum likelihood parameter estimates or using fully automatic, but statistically suboptical black-box methods. In kinetic experiments consecutive time series of MRS spectra are measured in which some of the parameters are known to remain constant over time. The purpose of this paper is to show how the previously mentioned methods can be extended to the simultaneous processing of all spectra in the time series using this additional information between the spectra. We will show that this approach yields statistically better results than processing the different signals separately.

Paper Details

Date Published: 2 October 1998
PDF: 12 pages
Proc. SPIE 3461, Advanced Signal Processing Algorithms, Architectures, and Implementations VIII, (2 October 1998); doi: 10.1117/12.325684
Show Author Affiliations
Leen Vanhamme, Katholieke Univ. Leuven (Belgium)
Sabine Van Huffel, Katholieke Univ. Leuven (Belgium)

Published in SPIE Proceedings Vol. 3461:
Advanced Signal Processing Algorithms, Architectures, and Implementations VIII
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top