Share Email Print
cover

Proceedings Paper

Plasma damage monitoring for PECVD deposition: a contact potential difference study and device yield analysis
Author(s): Zhiwei Xu; Christopher Bencher; Maggie Le; Chris Ngai
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A study was conducted to monitor plasma induced charging during a plasma enhanced chemical vapor deposition (PECVD) process. A contact potential difference (CPD) technique was used for the charge measurement on non-device blank wafers. In two TEOS based PECVD SiO2 deposition processes, one phosphorous doped and one undoped (USG), the plasma induced charging behavior was monitored while deposition conditions were varied. It was found that the process deposition pressure had a large effect on the plasma induced charging behavior. For both the PSG and the USG deposition processes, higher pressure process regimes offered significantly improved plasma charging performance than the conventional low pressure regimes. The CPD was reduced from -13.5V to 1.5V for the PSG process, and the CPD uniformity was reduced from 8.17V to 2.39V for the USG process. The improved deposition process conditions were tested on thin gate antenna test structures and correlated to significant improved device yield. Additionally, a plasma assisted de- chucking process was analyzed using the CPD technique and found to be an important source of plasma induced charging. When test were performed on thin gate antenna test structures the CPD again correlated well yield trends. In summary, the study demonstrated that CPD is a powerful, inexpensive, and rapid technique suitable for developing processes with improved gate oxide yield and for in-line monitoring of chamber performance.

Paper Details

Date Published: 27 August 1998
PDF: 7 pages
Proc. SPIE 3509, In-Line Characterization Techniques for Performance and Yield Enhancement in Microelectronic Manufacturing II, (27 August 1998); doi: 10.1117/12.324402
Show Author Affiliations
Zhiwei Xu, Applied Materials (United States)
Christopher Bencher, Applied Materials (United States)
Maggie Le, Applied Materials (United States)
Chris Ngai, Applied Materials (United States)


Published in SPIE Proceedings Vol. 3509:
In-Line Characterization Techniques for Performance and Yield Enhancement in Microelectronic Manufacturing II
Sergio A. Ajuria; Tim Z. Hossain, Editor(s)

© SPIE. Terms of Use
Back to Top