Share Email Print

Proceedings Paper

Detecting mines and minelike objects in highly cluttered multispectral aerial images by means of mathematical morphology
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Automatic mine detection is a critical issue in battle field management. This is expected to lead to better technologies that provide accurate and reliable detection of mines embedded in clutter. In this paper, we review a procedure for automatic mine detection in multispectral data provided by the Coastal Battlefield Reconnaissance and Analysis (COBRA) program. Our procedure is essentially a two-step method that employs the Maximum Noise Fraction (MNF) transform, a powerful enhancement tool for multispectral data, combined with nonlinear morphological operators that do the actual detection. Mathematical morphology is also used to account for the critical step of clutter estimation required by the MNF transform. Results obtained with available, truthed data, show the high success of the proposed method in meeting performance requirements. A low number of midsections is observed, whereas only a small number of false alarms is introduced by the algorithm. The results are better than the ones obtained by means of a constant false alarm rate (CFAR) algorithm provided along with the data.

Paper Details

Date Published: 4 September 1998
PDF: 13 pages
Proc. SPIE 3392, Detection and Remediation Technologies for Mines and Minelike Targets III, (4 September 1998); doi: 10.1117/12.324146
Show Author Affiliations
Ulisses M. Braga-Neto, Johns Hopkins Univ. (United States)
John Ioannis Goutsias, Johns Hopkins Univ. (United States)

Published in SPIE Proceedings Vol. 3392:
Detection and Remediation Technologies for Mines and Minelike Targets III
Abinash C. Dubey; James F. Harvey; J. Thomas Broach, Editor(s)

© SPIE. Terms of Use
Back to Top