Share Email Print

Proceedings Paper

Bayesian source separation and localization
Author(s): Kevin H. Knuth
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The problem of mixed signals occurs in many different contexts; one of the most familiar being acoustics. The forward problem in acoustics consists of finding the sound pressure levels at various detectors resulting from sound signals emanating from the active acoustic sources. The inverse problem consists of using the sound recorded by the detectors to separate the signals and recover the original source waveforms. In general, the inverse problem is unsolvable without additional information. This general problem is called source separation, and several techniques have been developed that utilize maximum entropy, minimum mutual information, and maximum likelihood. In previous work it has been demonstrated that these techniques can be recast in a Bayesian framework. This paper demonstrates the power of the Bayesian approach, which provides a natural means for incorporating prior information into a source model. An algorithm is developed that utilizes information regarding both the statistics of the amplitudes of the signals meted by the sources and the relative locations of the detectors. Using this prior information,the algorithm finds the most probable source behavior and configuration. Thus, the inverse problem can be solved by simultaneously performing source separation and localization. It should be noted that this algorithm is not designed to account for delay times that are often important in acoustic source separation. However, a possible application of this algorithm is in the separation of electrophysiological signals obtained using electroencephalography and magnetoencephalography.

Paper Details

Date Published: 22 September 1998
PDF: 12 pages
Proc. SPIE 3459, Bayesian Inference for Inverse Problems, (22 September 1998); doi: 10.1117/12.323794
Show Author Affiliations
Kevin H. Knuth, Albert Einstein College of Medicine and CUNY (United States)

Published in SPIE Proceedings Vol. 3459:
Bayesian Inference for Inverse Problems
Ali Mohammad-Djafari, Editor(s)

© SPIE. Terms of Use
Back to Top