Share Email Print
cover

Proceedings Paper

Prior modeling and posterior sampling in impedance imaging
Author(s): Geoff K. Nicholls; Colin Fox
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We examine sample based Bayesian inference from impedance imaging data. We report experiments employing low level pixel based priors with mixed discrete and continuous conductivities. Sampling is carried out using Metropolis- Hasting Markov chain Monte Carlo, employing both large scale, Langevin updates, and state-adaptive local updates. Computing likelihood ratios of conductivity distributions involves solving a second order linear partial differential equation. However our simulation is rendered computationally tractable by an update procedure which employs a linearization of the forward map and thereby avoids solving the PDE for those updates which are rejected.

Paper Details

Date Published: 22 September 1998
PDF: 12 pages
Proc. SPIE 3459, Bayesian Inference for Inverse Problems, (22 September 1998); doi: 10.1117/12.323791
Show Author Affiliations
Geoff K. Nicholls, Univ. of Auckland (New Zealand)
Colin Fox, Univ. of Auckland (New Zealand)


Published in SPIE Proceedings Vol. 3459:
Bayesian Inference for Inverse Problems
Ali Mohammad-Djafari, Editor(s)

© SPIE. Terms of Use
Back to Top