Share Email Print
cover

Proceedings Paper

Fast synchronization recovery for lossy image transmission with a suffix-rich Huffman code
Author(s): Te-Chung Yang; C.-C. Jay Kuo
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A new entropy codec, which can recover quickly from the loss of synchronization due to the occurrence of transmission errors, is proposed and applied to wireless image transmission in this research. This entropy codec is designed based on the Huffman code with a careful choice of the assignment of 1's and 0's to each branch of the Huffman tree. The design satisfies the suffix-rich property, i.e. the number of a codeword to be the suffix of other codewords is maximized. After the Huffman coding tree is constructed, the source can be coded by using the traditional Huffman code. Thus, this coder does not introduce any overhead to sacrifice its coding efficiency. Statistically, the decoder can automatically recover the lost synchronization with the shortest error propagation length. Experimental results show that fast synchronization recovery reduces quality degradation on the reconstructed image while maintaining the same coding efficiency.

Paper Details

Date Published: 1 October 1998
PDF: 12 pages
Proc. SPIE 3460, Applications of Digital Image Processing XXI, (1 October 1998); doi: 10.1117/12.323186
Show Author Affiliations
Te-Chung Yang, Univ. of Southern California (United States)
C.-C. Jay Kuo, Univ. of Southern California (United States)


Published in SPIE Proceedings Vol. 3460:
Applications of Digital Image Processing XXI
Andrew G. Tescher, Editor(s)

© SPIE. Terms of Use
Back to Top