Share Email Print

Proceedings Paper

Perceptually based quantization technique for MPEG encoding
Author(s): Wilfried M. Osberger; Anthony John Maeder; Neil W. Bergmann
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present a technique for controlling the adaptive quantization process in an MPEG encoder, which improves upon the commonly used TM5 rate controller. The method combines both a spatial masking model and a technique for automatically determining the visually important areas in a scene. The spatial masking model has been designed with consideration of the structure of compressed natural images. It takes into account the different levels of distortion that are tolerable by viewers in different parts of a picture by segmenting the scene into flat, edge, and textured regions and quantizing these regions differently. The visually important scene areas are calculated using Importance Maps. These maps are generated by combining factors known to influence human visual attention and eye movements. Lower quantization is assigned to visually important regions, while areas classified as being of low visual importance are more harshly quantized. Results indicate a subjective improvement in picture quality, in comparison to the TM5 method. Less ringing occurs at edges, and the visually important areas of a picture are more accurately coded. This is particularly noticeable at low bit rates. The technique is computationally efficient and flexible, and can easily be extended to specific applications.

Paper Details

Date Published: 17 July 1998
PDF: 12 pages
Proc. SPIE 3299, Human Vision and Electronic Imaging III, (17 July 1998); doi: 10.1117/12.320106
Show Author Affiliations
Wilfried M. Osberger, Queensland Univ. of Technology (United States)
Anthony John Maeder, Univ. of Ballarat (Australia)
Neil W. Bergmann, Queensland Univ. of Technology (Australia)

Published in SPIE Proceedings Vol. 3299:
Human Vision and Electronic Imaging III
Bernice E. Rogowitz; Thrasyvoulos N. Pappas, Editor(s)

© SPIE. Terms of Use
Back to Top