Share Email Print
cover

Proceedings Paper

Simulation of a fast framing staring sensor
Author(s): Karen J. Jefferson; Richard D. Wickstrom
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A sensor system simulation has been developed which aids in the evaluation of a proposed fast framing staring sensor as it will perform in its operational environment. Beginning with a high resolution input image, a sequence of frames at the target sensor resolution are produced using the assumed platform motion and the contribution of various noise sources as input data. The resulting frame sequence can then be used to help define system requirements, to aid algorithm development, and to predict system performance. In order to assess the performance of a sensor system, the radiance measured by the system is modeled using a variety of scenarios. For performance prediction, the modeling effort is directed toward providing the ability to determine the minimum Noise Equivalent Target (NET) intensities for each band of the sensor system. The NET is calculated at the entrance pupil of the instrument in such a way that the results can be applied to a variety of point source targets and collection conditions. The intent is to facilitate further study within the user community as new mission areas and/or targets of interest develop that are not addressed explicitly during sensor conceptual design.

Paper Details

Date Published: 26 August 1998
PDF: 9 pages
Proc. SPIE 3377, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IX, (26 August 1998); doi: 10.1117/12.319378
Show Author Affiliations
Karen J. Jefferson, Sandia National Labs. (United States)
Richard D. Wickstrom, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 3377:
Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IX
Gerald C. Holst, Editor(s)

© SPIE. Terms of Use
Back to Top