Share Email Print

Proceedings Paper

Spectral and electrochemical properties of phenylazonaphthalene based on a self-assembled monolayer
Author(s): Aidong Zhang; Jingui Qin; Jianhua Gu; Zu-Hong Lu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A thiol-terminated phenylazonaphthalene derivative, namely 1-mercapto-6-[1-(4-phenylazonaphthoxy)]hexane 1, was synthesized by diazo coupling of aniline with 1-naphthol, etherification with 1,6-dibromohexane and thiol derivatization, subsequently. By self-assembly technology, the compound was spontaneously absorbed in thin, optically transparent gold film and formed stable self-assembled monolayer (SAM). The self-assembly course was monitored by UV-visible absorption spectra which gave direct evidence for the self-assembly mechanism of self-assembled monolayer, i.e., chemically adsorbed firstly, then came through a long- time orientation. Meanwhile, cyclic voltammogram was employed to study the electrochemical reduction and oxidation of the immobilized phenylazonaphthalene. The single molecular area obtained using the two methods was almost the same: ca. 0.9 nm2. The irreversibility of the electrode process, sluggish reaction and reduction peak splitting all were originated from the well molecular orientation, not the dense packing in the SAM. This implied the process of oxidation and reduction accompanied the molecular conformation change which needed more free space for the movement of the molecular chain during the electrode processes.

Paper Details

Date Published: 10 August 1998
PDF: 6 pages
Proc. SPIE 3562, Optical Storage Technology, (10 August 1998); doi: 10.1117/12.318496
Show Author Affiliations
Aidong Zhang, Wuhan Univ. (China)
Jingui Qin, Wuhan Univ. (China)
Jianhua Gu, Southeast Univ. (China)
Zu-Hong Lu, Southeast Univ. (China)

Published in SPIE Proceedings Vol. 3562:
Optical Storage Technology
Duanyi Xu; Seiya Ogawa, Editor(s)

© SPIE. Terms of Use
Back to Top