Share Email Print
cover

Proceedings Paper

Lessons learned from multiple fidelity modeling of ground interferometer testbeds
Author(s): Sanjay S. Joshi; Gregory W. Neat
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The MicroPrecision Interferometer Testbed (MPI), at JPL is a dynamically and dimensionally representative hardware model of a future spaceborne optical interferometry. Over the past few years, several models of MPI have been created. These include detailed, high-fidelity models of MPI and several lower-fidelity models. These models were meant to answer two basic questions: (1) Does current modeling methodology allow accurate models of highly complex opto-mechanical systems such as the MPI testbed, and (2) given a valid modeling methodology, how much model fidelity is needed in models to accurately predict performance. In order to answer these questions, four models of the MPI testbed were created; each with a unique optical and structural model fidelity. This paper reviews results obtained for these models. It compares disturbance transfer function predictions from three of the models with measured disturbance transfer functions from the hardware testbed. Results suggest that it is possible to build a highly accurate high-fidelity model, thus validating the modeling methodology. With lower fidelity models, meaningful model prediction errors exist when simple models are used to represent the complex opto-mechanical system. However, modest increase in model fidelity can lead to significant improvement.

Paper Details

Date Published: 24 July 1998
PDF: 11 pages
Proc. SPIE 3350, Astronomical Interferometry, (24 July 1998); doi: 10.1117/12.317188
Show Author Affiliations
Sanjay S. Joshi, Jet Propulsion Lab. (United States)
Gregory W. Neat, Jet Propulsion Lab. (United States)


Published in SPIE Proceedings Vol. 3350:
Astronomical Interferometry
Robert D. Reasenberg, Editor(s)

© SPIE. Terms of Use
Back to Top