Share Email Print
cover

Proceedings Paper

Imaging capabilities of weak-phase interferometric devices
Author(s): Andre Lannes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The first imaging devices of optical interferometry are likely to be of weak phase, typically: a set of three- element arrays, coherent and stable, independently observing the same object. The study of their imaging capabilities essentially addresses the self-calibration problem and its stability. Like in VLBI, the principle of our self- calibration methods consists in preforming a series of alternate phase calibration operations and Fourier synthesis processes. Algebraic graph theory and algebraic number theory prove to be the key topics involved in the phase calibration operation. The latter can often be written in closed form. As expected, the relative expressions explicitly refer to a set of independent closure phases. To illustrate this essential point, we consider the special case of three-element arrays. The corresponding phase calibration formula, which is then particularly simple, provides all the elements for coping with the possible global instabilities. The Fourier synthesis process, which is also involved in the self-calibration cycles, is performed via WIPE, a methodology recently introduced in radio imaging and optical interferometry. The robustness of the image reconstruction process can then be well controlled.

Paper Details

Date Published: 24 July 1998
PDF: 8 pages
Proc. SPIE 3350, Astronomical Interferometry, (24 July 1998); doi: 10.1117/12.317168
Show Author Affiliations
Andre Lannes, Observatoire Midi-Pyrenees (France)


Published in SPIE Proceedings Vol. 3350:
Astronomical Interferometry
Robert D. Reasenberg, Editor(s)

© SPIE. Terms of Use
Back to Top