Share Email Print
cover

Proceedings Paper

Signal-to-noise ratio and radiation dose as a function of photon energy in mammography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This study investigated the signal to noise ratio (SNR) and radiation dose as a function of photon energy in screen-film mammography. An analytical expression was derived for the SNR for monoenergetic photons incident on simulated masses and microcalcifications embedded in uniform slabs of Lucite. The mean dose, D, was determined by dividing the total energy deposited in the Lucite phantom by the corresponding phantom mass. SNR and dose data for different photon energies were normalized to a constant value of energy absorbed by a 34 mg/cm2 Gd2O2S screen. A figure of merit (FOM), defined as SNR2/D, permitted the optimum photon energy to be determined for each imaging task. For microcalcifications, the optimum energy was dependent on the size of the microcalcification, and increased from 19 keV for 100 micrometer to 22 keV for 500 micrometer imaged in a 4 cm Lucite phantom. The optimal photon energy for microcalcifications was 16 - 19 keV for a 2 cm phantom, increasing to 24 - 26 keV for an 8 cm phantom. For simulated masses of all diameters (2 mm to 10 mm) and thickness (0.15 to 0.6 mm), the optimal photon energy was approximately 17 keV for a 2 cm phantom, and increased to approximately 32 keV for an 8 cm phantom.

Paper Details

Date Published: 24 July 1998
PDF: 9 pages
Proc. SPIE 3336, Medical Imaging 1998: Physics of Medical Imaging, (24 July 1998); doi: 10.1117/12.317035
Show Author Affiliations
Walter Huda, SUNY Health Sciences Ctr./Syracuse (United States)
Andrzej Krol, SUNY Health Sciences Ctr./Syracuse (United States)
Zhenxue Jing, Univ. of Florida (United States)
John M. Boone, Univ. of California/Davis Medical Ctr. (United States)


Published in SPIE Proceedings Vol. 3336:
Medical Imaging 1998: Physics of Medical Imaging
James T. Dobbins; John M. Boone, Editor(s)

© SPIE. Terms of Use
Back to Top