Share Email Print
cover

Proceedings Paper

Image quantization: statistics and modeling
Author(s): Bruce R. Whiting; Edward Muka
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A method for analyzing the effects of quantization, developed for temporal one-dimensional signals, is extended to two- dimensional radiographic images. By calculating the probability density function for the second order statistics (the differences between nearest neighbor pixels) and utilizing its Fourier transform (the characteristic function), the effect of quantization on image statistics can be studied by the use of standard communication theory. The approach is demonstrated by characterizing the noise properties of a storage phosphor computed radiography system and the image statistics of a simple radiographic object (cylinder) and by comparing the model to experimental measurements. The role of quantization noise and the onset of contouring in image degradation are explained.

Paper Details

Date Published: 24 July 1998
PDF: 12 pages
Proc. SPIE 3336, Medical Imaging 1998: Physics of Medical Imaging, (24 July 1998); doi: 10.1117/12.317025
Show Author Affiliations
Bruce R. Whiting, Mallinckrodt Institute of Radiology (United States)
Edward Muka, Mallinckrodt Institute of Radiology (United States)


Published in SPIE Proceedings Vol. 3336:
Medical Imaging 1998: Physics of Medical Imaging
James T. Dobbins; John M. Boone, Editor(s)

© SPIE. Terms of Use
Back to Top