Share Email Print
cover

Proceedings Paper

Design of a knee and leg muscle exerciser for paraplegics using a shape memory alloy rotary joint actuator
Author(s): Guoping Wang; Mohsen Shahinpoor
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper presents a design of an active knee and leg muscle exerciser using a shape memory alloy (SMA) rotary joint actuator. This active exerciser is designed for a paraplegic to exercise his or her knee and leg muscles. The exerciser is composed of a lower extremity orthosis or a knee brace, an SMA rotary joint actuator, and an electronic control unit. The lower extremity orthosis and knee brace are commercially available. The analysis model of the SMA rotary joint actuator is introduced and the design formulas are derived. A quasi-static analysis of the SMA rotary joint actuator is assumed in this design. The actuating component of the SMA rotary joint actuator is a bundle of lengthy SMA wires which are wrapped on several wrapping pulleys. A constant force spring is incorporated in this actuator to provide the SMA wires with a bias force to maintain a recoverable initial position of the actuator. A prototype of the active knee and leg muscle exerciser is designed, and an electronic control unit in the prototype provides users with a means of adjusting forward rotation speed and cycle time of the exerciser.

Paper Details

Date Published: 20 July 1998
PDF: 9 pages
Proc. SPIE 3324, Smart Structures and Materials 1998: Smart Materials Technologies, (20 July 1998); doi: 10.1117/12.316862
Show Author Affiliations
Guoping Wang, Univ. of New Mexico (United States)
Mohsen Shahinpoor, Univ. of New Mexico (United States)


Published in SPIE Proceedings Vol. 3324:
Smart Structures and Materials 1998: Smart Materials Technologies
Manfred R. Wuttig, Editor(s)

© SPIE. Terms of Use
Back to Top