Share Email Print

Proceedings Paper

Relation of the cracking phenomena in piezoelectrics to domain wall motion
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An ongoing investigation into understanding the nature and mechanics of damage in piezoelectric material under combined cyclic electrical and static mechanical loads is described. The piezoelectric is subjected to large field excursions that are sufficient to cause polarization switching at least around internal anomalies, as well as mechanical stresses with values well below ultimate strength of the material. Experimental work is conducted on PZT-5H with macroscopically engineered dissimilar (180°) domain structures. All samples contain a seed notch to introduce a stress concentration at a specified location and eliminate questions associated with electrode attachment. Results indicate that for specimens undergoing significant domain wall motion the crack initiation occurs after only 20 - 100 cycles while for specimens undergoing small domain wall motion cracks initiate after 800,000 cycles. Compressive mechanical loads are found to retard damage growth. Experimental results are explained with data obtained from a finite element model. The principal conclusion is that domain wall motion on both micro and macro levels is responsible for crack initiation and degradation of the material during cycling loading.

Paper Details

Date Published: 20 July 1998
PDF: 7 pages
Proc. SPIE 3324, Smart Structures and Materials 1998: Smart Materials Technologies, (20 July 1998); doi: 10.1117/12.316858
Show Author Affiliations
Pavel M. Chaplya, Univ. of California/Los Angeles (United States)
Gregory Paul Carman, Univ. of California/Los Angeles (United States)

Published in SPIE Proceedings Vol. 3324:
Smart Structures and Materials 1998: Smart Materials Technologies
Manfred R. Wuttig, Editor(s)

© SPIE. Terms of Use
Back to Top