Share Email Print
cover

Proceedings Paper

Relaxor-based ferroelectric single crystals for electromechanical actuators
Author(s): Seung Eek Eagle Park; Venkata Vedula; Ming-Jen Pan; Wesley S. Hackenberger; Patrick Pertsch; Thomas R. Shrout
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The piezoelectric properties of relaxor based ferroelectric single crystals, such as Pb(Zn1/3Nb2/3)O3 - PbTiO3 (PZN-PT) and Pb(Mg1/3Nb2/3)O3 - PbTiO3 (PMN- PT) were investigated for electromechanical actuators. In contrast to polycrystalline materials such as Pb(Zr,Ti)O3 (PZT's), morphotropic phase boundary compositions were not essential for high piezoelectric strain. Piezoelectric coefficients (d33's) > 2500 pC/N and subsequent strain levels up to > 0.6% with minimal hysteresis were observed. Crystallographically, high strains are achieved for <001> oriented rhombohedral crystals, though <111> is the polar direction. Ultrahigh strain levels up to 1.7%, an order of magnitude larger than those available from conventional piezoelectric and electrostrictive ceramics could be achieved, being related to an E-field induced phase transformation. Strain vs. E-field behavior under external stress was also much superior to that of conventional piezoelectric ceramics. High electromechanical coupling (k33) > 90% and low dielectric loss <1%, along with large strain make these crystals promising candidates for high performance solid state actuators.

Paper Details

Date Published: 20 July 1998
PDF: 9 pages
Proc. SPIE 3324, Smart Structures and Materials 1998: Smart Materials Technologies, (20 July 1998); doi: 10.1117/12.316856
Show Author Affiliations
Seung Eek Eagle Park, The Pennsylvania State Univ. (United States)
Venkata Vedula, The Pennsylvania State Univ. (United States)
Ming-Jen Pan, The Pennsylvania State Univ. (United States)
Wesley S. Hackenberger, TRS Ceramics, Inc. (United States)
Patrick Pertsch, The Pennsylvania State Univ. (Germany)
Thomas R. Shrout, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 3324:
Smart Structures and Materials 1998: Smart Materials Technologies
Manfred R. Wuttig, Editor(s)

© SPIE. Terms of Use
Back to Top