Share Email Print

Proceedings Paper

Depth segmentation and occluded scene reconstruction using ego-motion
Author(s): Morgan Ulvklo; Hans Knutsson; Goesta H. Granlund
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper introduces a signal processing strategy for depth segmentation and scene reconstruction that incorporates occlusion as a natural component. The work aims to maximize the use of connectivity in the temporal domain as much as possible under the condition that the scene is static and that the camera motion is known. An object behind the foreground is reconstructed using the fact that different parts of the object have been seen in different images in the sequence. One of the main ideas in this paper is the use of a spatio- temporal certainty volume c(x) with the same dimension as the input spatio-temporal volume s(x), and then use c(x) as a 'blackboard' for rejecting already segmented image structures. The segmentation starts with searching for image structures in the foreground, eliminate their occluding influence, and then proceed. Normalized convolution, which is a Weighted Least Mean Square technique for filtering data with varying spatial reliability, is used for all filtering. High spatial resolution near object borders is achieved and only neighboring structures with similar depth supports each other.

Paper Details

Date Published: 6 July 1998
PDF: 12 pages
Proc. SPIE 3387, Visual Information Processing VII, (6 July 1998); doi: 10.1117/12.316400
Show Author Affiliations
Morgan Ulvklo, Defence Research Establishment and Linkoeping Univ. (Sweden)
Hans Knutsson, Linkoeping Univ. (Sweden)
Goesta H. Granlund, Linkoeping Univ. (Sweden)

Published in SPIE Proceedings Vol. 3387:
Visual Information Processing VII
Stephen K. Park; Richard D. Juday, Editor(s)

© SPIE. Terms of Use
Back to Top