Share Email Print

Proceedings Paper

Experimental basis of laser therapy in pharynx pathology
Author(s): Lyudmila A. Toropova; Lyudmila V. Fedyukovich; Alla B. Egorova
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Membrane-damaging action of laser irradiation comparing with membranotoxic activity of model xenobiotics (Novocain and Acrylamide) has been evaluated in our experiments using Rosette-Forming Ability test (RFA) on rat blood lymphocytes, thymocytes, splenocytes for the assessment of membrane- mediated and receptor-mediated immune cells interactions. Infra-red laser irradiation (80 and 1500 Hz, 0.89 mkM) in vivo induced 2-fold increase of lymphocytes capable to form specific rosettes with xenogenous erythrocytes. T-lymphocytes were greatly sensitive to the laser influence. Acute laser exposure (128 sec) induced changes similar to Novocain action (1/2 LD50). Five-fold increase of the laser exposure time (especially for low frequency regime) resulted in more prominent changes in intercellular communication which were found to be similar to the action of Acrylamide (1/2 LD50). B-lymphocytes and splenocytes have been assumed as target cells for the action of laser with the frequency of 1500 Hz. Course application of IR or He-Ne laser induced decrease of RFA for all immune cells tested, and for blood lymphocytes, respectively. Thus, laser-induced changes in immune cells interaction may be connected with reversible injury of cell surface membrane followed by the dysregulation of cellular communication. Based on experimental data, the optimal regime of IR laserotherapy (0.89 and 0.63 micrometer) was chosen for the treatment of 200 patients with chronic decompensated tonsillitis. Efficiency of laser application was confirmed by cytological analysis of lacunes, laserodopplerofluometria, vegetative nervous system evaluation etc. and was found to be dependent on membranotropic activity of laser irradiation.

Paper Details

Date Published: 1 July 1998
PDF: 5 pages
Proc. SPIE 3245, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, (1 July 1998); doi: 10.1117/12.312288
Show Author Affiliations
Lyudmila A. Toropova, Krasnoyarsk State Medical Academy (Russia)
Lyudmila V. Fedyukovich, Krasnoyarsk State Medical Academy (Russia)
Alla B. Egorova, Krasnoyarsk State Medical Academy (Russia)

Published in SPIE Proceedings Vol. 3245:
Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII
Graham M. Watson; Harvey Lui; Lou Reinisch; Penny J. Smalley; Kenneth Eugene Bartels; R. Rox Anderson; Lawrence S. Bass; Kenneth Eugene Bartels; C. Gaelyn Garrett; Lloyd P. Tate; Sharon L. Thomsen; Reza S. Malek; Aaron P. Perlmutter; R. Rox Anderson; Lawrence S. Bass; C. Gaelyn Garrett; Kenton W. Gregory; Harvey Lui; Reza S. Malek; Aaron P. Perlmutter; Lou Reinisch; Penny J. Smalley; Lloyd P. Tate; Sharon L. Thomsen; Graham M. Watson, Editor(s)

© SPIE. Terms of Use
Back to Top