Share Email Print
cover

Proceedings Paper

Physical mechanisms of importance to laser thrombolysis
Author(s): Edward J. Chapyak; Robert P. Godwin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Bubble dynamics plays a key role in many medical procedures including Laser Thrombolysis (L-T), acoustic and laser lithotripsy, interocular laser surgery, photoacoustic drug delivery, and perhaps ultrasonic imaging. We are investigating the effect that interfaces of different materials, especially biological and biomedical materials, have on the dynamics of nearby bubbles. Collapsing bubbles often become nonspherical, resulting in spectacular directed motion with potentially both beneficial and undesirable consequences. This directed motion may explain L-T mass removal and some types of laser-induced tissue damage.

Paper Details

Date Published: 1 July 1998
PDF: 7 pages
Proc. SPIE 3245, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, (1 July 1998); doi: 10.1117/12.312270
Show Author Affiliations
Edward J. Chapyak, Los Alamos National Lab. (United States)
Robert P. Godwin, Los Alamos National Lab. (United States)


Published in SPIE Proceedings Vol. 3245:
Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII
Graham M. Watson; Harvey Lui; Lou Reinisch; Penny J. Smalley; Kenneth Eugene Bartels; R. Rox Anderson; Lawrence S. Bass; Kenneth Eugene Bartels; C. Gaelyn Garrett; Lloyd P. Tate; Sharon L. Thomsen; Reza S. Malek; Aaron P. Perlmutter; R. Rox Anderson; Lawrence S. Bass; C. Gaelyn Garrett; Kenton W. Gregory; Harvey Lui; Reza S. Malek; Aaron P. Perlmutter; Lou Reinisch; Penny J. Smalley; Lloyd P. Tate; Sharon L. Thomsen; Graham M. Watson, Editor(s)

© SPIE. Terms of Use
Back to Top