Share Email Print

Proceedings Paper

Carrier distribution in asymmetric dual quantum wells
Author(s): Ching-Fuh Lin; Bor-Lin Lee
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The carrier density distribution in MQWs is investigated using asymmetric dual quantum wells (ADQWs). The ADQWs consist of a stake of double quantum wells with different well widths. The corresponding spontaneous emission for each well is centered on 0.8 micrometers and 0.83 micrometers , respectively. The carrier recombination in each quantum well can be distinguished by the EL spectrum. We theoretically calculate the EL spectrum of the ADQWs using the multi-band effective mass theory and density matrix formalism with different carrier distribution condition. In the multi-band effective mass theory, valence band mixing is taken into account by a 4 X 4 Luttinger-Kohn Hamiltonian. A Lorentzian lineshape function is used to include the intraband relaxation and lineshape broadening. The comparison of the calculated results with the experimentally measured EL spectrum and TE/TM mode ratio is given. At 200mA injection current,the theoretical EL spectrum shows very good agreement with the experimental results when the carrier density in the p-side well is 17 percent higher than that in the n-side well. Decreasing the injection current, the uniformity of the carrier density distribution becomes better. The reasons for the behavior of the carrier distributions are briefly discussed.

Paper Details

Date Published: 22 June 1998
PDF: 0 pages
Proc. SPIE 3419, Optoelectronic Materials and Devices, 341918 (22 June 1998); doi: 10.1117/12.311030
Show Author Affiliations
Ching-Fuh Lin, National Taiwan Univ. (Taiwan)
Bor-Lin Lee, National Taiwan Univ. (Taiwan)

Published in SPIE Proceedings Vol. 3419:
Optoelectronic Materials and Devices
Marek Osinski; Yan-Kuin Su, Editor(s)

© SPIE. Terms of Use
Back to Top