Share Email Print
cover

Proceedings Paper

Experiments with particle damping
Author(s): Joseph J. Hollkamp; Robert W. Gordon
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

High cycle fatigue in jet engines is a current military concern. The vibratory stresses that cause fatigue can be reduced by adding damping. However, the high temperatures that occur in the gas turbine greatly hinder the application of mature damping technologies. One technology which may perform in the harsh environment is particle damping. Particle damping involves placing metallic or ceramic particles inside structural cavities. As the cavity vibrates, energy is dissipated through particle collisions. Performance is influenced by many parameters including the type, shape, and size of the particles; the amount of free volume for the particles to move in; density of the particles; and the level of vibration. This paper presents results from a series of experiments designed to gain an appreciation of the important parameters. The experimental setup consists of a cantilever beam with drilled holes. These holes are partially filled with particles. The types of particles, location of the particles, fill level, and other parameters are varied. Damping is estimated for each configuration. Trends in the results are studied to determine the influence of the varied parameter.

Paper Details

Date Published: 16 June 1998
PDF: 11 pages
Proc. SPIE 3327, Smart Structures and Materials 1998: Passive Damping and Isolation, (16 June 1998); doi: 10.1117/12.310675
Show Author Affiliations
Joseph J. Hollkamp, Air Force Research Lab. (United States)
Robert W. Gordon, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 3327:
Smart Structures and Materials 1998: Passive Damping and Isolation
L. Porter Davis, Editor(s)

© SPIE. Terms of Use
Back to Top