Share Email Print
cover

Proceedings Paper

Power flow through amplifiers controlling electrostrictive actuators
Author(s): Gregory A. Zvonar; Douglas K. Lindner; Richard M. Goff
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, the power flow between stacked electrostrictor actuators and a pulse-width-modulated switching amplifier is analyzed. The amplifier and actuator are components of a smart skin whose function is underwater acoustic echo cancellation. An integrated model is developed with includes a dynamic structural model of the actuator, a dynamic model of the power electronics and a nonlinear electromechanical coupling mechanism of the electrostrictor actuation materials.Using a linearized model, the mechanical admittance of the actuator seen by an external force is analyzed. An outer acoustic control loop is shown to modify this mechanical admittance and optimize the power coupling between the actuator and an external fluid medium by impedance matching. Effective power flow occurs only when the frequency of the external force is within the bandwidth of the amplifier.

Paper Details

Date Published: 16 June 1998
PDF: 10 pages
Proc. SPIE 3326, Smart Structures and Materials 1998: Industrial and Commercial Applications of Smart Structures Technologies, (16 June 1998); doi: 10.1117/12.310664
Show Author Affiliations
Gregory A. Zvonar, Virginia Polytechnic Institute and State Univ. (United States)
Douglas K. Lindner, Virginia Polytechnic Institute and State Univ. (United States)
Richard M. Goff, Virginia Polytechnic Institute and State Univ. (United States)


Published in SPIE Proceedings Vol. 3326:
Smart Structures and Materials 1998: Industrial and Commercial Applications of Smart Structures Technologies
Janet M. Sater, Editor(s)

© SPIE. Terms of Use
Back to Top