Share Email Print
cover

Proceedings Paper

Evaluation of scanning electron microscope resolution
Author(s): Aude Maulny; Gilles L. Fanget
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The evaluation of Scanning Electron Microscopes (SEM) resolution through Two Dimensions Fast Fourier Transform (2D FFT) image analysis is becoming a standard. We propose an improvement of these methods with a patented technique. This new image processing is designed to extract the transfer function of the SEM from the picture and then to realize the analysis of this function. A first algorithm extracts an 'ideal' image of the sample from the 'raw' image obtained on the equipment. Then a second algorithm extracts the SEM transfer function through a comparison between the two images ('ideal' and 'raw'). Finally a third algorithm modelizes the transfer function as a two dimensions Normal function and draws out the result. The representation of the transfer function of the SEM with a Normal function allows to define the shape of an Equivalent of the Electron Beam (EEB). This EEB represents the primary electron beam altered by the interactions with the sample and the losses in the acquisition loop. It is important to outline these alterations as they limit the sharpness of the images obtained from the tool. This way of doing lessens the influence of sample parameters on the final results and thus represent more precisely the SEM Transfer Function.

Paper Details

Date Published: 8 June 1998
PDF: 10 pages
Proc. SPIE 3332, Metrology, Inspection, and Process Control for Microlithography XII, (8 June 1998); doi: 10.1117/12.308779
Show Author Affiliations
Aude Maulny, Univ. Lyon I--Claude Bernard (France)
Gilles L. Fanget, CEA-LETI (France)


Published in SPIE Proceedings Vol. 3332:
Metrology, Inspection, and Process Control for Microlithography XII
Bhanwar Singh, Editor(s)

© SPIE. Terms of Use
Back to Top