Share Email Print
cover

Proceedings Paper

Diode-laser-illuminated automotive lamp systems
Author(s): Michael A. Marinelli; Jeffrey T. Remillard
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have utilized the high brightness of state-of-the-art diode laser sources, and a variety of emerging optical technologies to develop a new class of thin, uniquely styled automotive brake and signal lamps. Using optics based on thin (5 mm) plastic sheets, these lamps provide appearance and functional advantages not attainable with traditional automotive lighting systems. The light is coupled into the sheets using a 1 mm diameter glass fiber, and manipulated using refraction and reflection from edges, surfaces, and shaped cut-outs. Light can be extracted with an efficiency of approximately 50% and formed into a luminance distribution that meets the Society of Automotive Engineers (SAE) photometric requirements. Prototype lamps using these optics have been constructed and are less than one inch in thickness. Thin lamps reduce sheet metal costs, complexity, material usage, weight, and allow for increased trunk volume. In addition, these optics enhance lamp design flexibility. When the lamps are not energized, they can appear body colored, and when lighted, the brightness distribution across the lamp can be uniform or structured. A diode laser based brake lamp consumes seven times less electrical power than one using an incandescent source and has instant on capability. Also, diode lasers have the potential to be 10-year/150,000 mile light sources.

Paper Details

Date Published: 4 May 1998
PDF: 8 pages
Proc. SPIE 3285, Fabrication, Testing, Reliability, and Applications of Semiconductor Lasers III, (4 May 1998); doi: 10.1117/12.307604
Show Author Affiliations
Michael A. Marinelli, Visteon (United States)
Jeffrey T. Remillard, Ford Motor Co. (United States)


Published in SPIE Proceedings Vol. 3285:
Fabrication, Testing, Reliability, and Applications of Semiconductor Lasers III
Kurt J. Linden; Mahmoud Fallahi; Kurt J. Linden; S. C. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top