Share Email Print

Proceedings Paper

Doppler ambiguity resolution using optimal multiple pulse repetition frequencies
Author(s): Xiang-Gen Xia
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ferrari, Berenguer, and Alengrin recently proposed an algorithm for velocity ambiguity resolution in coherent pulsed Doppler radar using multiple pulse repetition frequencies (PRF). In this algorithm, two step estimations for the Doppler frequency is used by choosing particular PRF values. The folded frequency is the fractional part of the Doppler frequency and is estimated by averaging the folded frequency estimates for each PRF. The ambiguity order is the integer part of the Doppler frequency and is estimated by using the quasi maximum likelihood criterion. The PRF are grouped into pairs and each pair PRF values are symmetry about 1. The folded frequency estimate for each pari is the circular mean of the two folded frequency estimates of the pair due to the symmetry property. In this paper, we propose a new algorithm based on the optimal choice of the PRF values, where the PRF values are also grouped into pairs. In each pair PRF values, one is given and the other is optimally chosen. The optimality is built upon the minimal sidelobes of the maximum likelihood criterion. Numerical simulations are presented to illustrate the improved performance.

Paper Details

Date Published: 26 March 1998
PDF: 12 pages
Proc. SPIE 3391, Wavelet Applications V, (26 March 1998); doi: 10.1117/12.304863
Show Author Affiliations
Xiang-Gen Xia, Univ. of Delaware (United States)

Published in SPIE Proceedings Vol. 3391:
Wavelet Applications V
Harold H. Szu, Editor(s)

© SPIE. Terms of Use
Back to Top