Share Email Print

Proceedings Paper

Extended dynamical range solid state photon counter
Author(s): Ivan Prochazka; Karel Hamal; Josef Blazej; Georg Kirchner; Franz Koidl
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The paper describes the new achievements in an all solid state photon counting technique with picosecond resolution. The extended dynamical range has been achieved: the dependence of the detection delay on the detected signal strength - the time walk -has been compensated within several orders of optical signal strength. The principal application of the detector is the millimeter resolution satellite laser ranging. The detector is based on silicon avalanche photodiode pulse biased above its break voltage. The external gating and avalanche active quenching electronics is used. The time walk of the avalanche photodiode is of the order of hundreds of picoseconds in the dynamical range of single to one hundred photons input signal strengths. The additional electronics circuit has been developed to compensate for the time walk: the input optical signal strength influences the avalanche current build up time,the maximum build up time difference is 20 psec within the dynamical range 1:1000. This time difference is sensed, stretched by the factor of ten. The stretched time interval is applied, with the negative sign, as a correction to the detector propagation delay. The detector ultimate timing resolution, temporal stability, dynamical range and its dependence on the input laser pulse length have been investigated in detail. The fieldable version of the detector is been used for satellite laser ranging purposes. The timing resolution of the entire detector better than 20 picoseconds r.m.s., the maximum dynamical range > 1000:1 with the item walk bellow +/- psec have ben achieved, the results are presented. The additional applications in spectroscopy, biophysics, rangefinding and fiber optics may be considered.

Paper Details

Date Published: 8 April 1998
PDF: 5 pages
Proc. SPIE 3287, Photodetectors: Materials and Devices III, (8 April 1998); doi: 10.1117/12.304499
Show Author Affiliations
Ivan Prochazka, Czech Technical Univ. (Czech Republic)
Karel Hamal, Czech Technical Univ. (Czech Republic)
Josef Blazej, Czech Technical Univ. (Czech Republic)
Georg Kirchner, Austrian Academy of Science (Austria)
Franz Koidl, Austrian Academy of Science (Austria)

Published in SPIE Proceedings Vol. 3287:
Photodetectors: Materials and Devices III
Gail J. Brown, Editor(s)

© SPIE. Terms of Use
Back to Top