Share Email Print
cover

Proceedings Paper

Growth and characterization of InAs/GaSb type-II superlattice for long-wavelength infrared detectors
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We report the molecular beam epitaxial growth and characterization of InAs/GaSb superlattices grown on semi- insulating GaAs substrate for long wavelength IR detectors. Photoconductive detectors fabricated from the superlattices showed 80 percent cut-off at 11.6 micrometers and peak responsivity of 6.5 V/W with Johnson noise limited detectivity of 2.36 X 109 cmHz1/2/W at 10.7 micrometers at 78 K. The responsivity decreases at higher temperatures with a T-2 behavior rather than exponential decay, and at room temperature the responsivity is about 660 mV/W at 11 micrometers . Lower Auger recombination rate in this system provides comparable detectivity to the best HgCdTe detectors at 300K. Higher uniformity over large areas, simpler growth and the possibility of having read-out circuits in the same GaAs chip are the advantages of this system over HgCdTe detectors for near room temperature operation.

Paper Details

Date Published: 8 April 1998
PDF: 8 pages
Proc. SPIE 3287, Photodetectors: Materials and Devices III, (8 April 1998); doi: 10.1117/12.304497
Show Author Affiliations
Hooman Mohseni, Northwestern Univ. (United States)
Erick J. Michel, Northwestern Univ. (United States)
Manijeh Razeghi, Northwestern Univ. (United States)
W. C. Mitchel, Air Force Research Lab. (United States)
Gail J. Brown, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 3287:
Photodetectors: Materials and Devices III
Gail J. Brown, Editor(s)

© SPIE. Terms of Use
Back to Top