Share Email Print

Proceedings Paper

Film stress and geometry effects in chrome photomask cleaning damage
Author(s): H. Ufuk Alpay; James L. Wood; Franklin D. Kalk
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

As design rules shrink, photomask blank material characteristics play a more significant role in successful mask fabrication. Chromium-based absorber film stress is a key material attribute in determining mask quality. A photomask is cleaned several times during manufacture by various techniques incorporating part or all of the following processes: strong acids, bases, high pressure sprays, mechanical brushes, sonic agitation. In such aggressive environments, electrostatic discharge damage (ESD) and mechanical damage can occur. Chromium-based film dependence on sputter deposition parameters was studied here. Photoblank flatness, measured by optical interferometry, was used to quantify the stress. Blanks with various chrome film stresses were patterned with features combining different geometry types. The masks were then subjected to multiple cleaning cycles and inspected after each cycle. The results demonstrate how mask damage is related to the film mechanical properties (which are controllable by sputter deposition parameters) and the pattern itself (which is not controllable).

Paper Details

Date Published: 12 February 1997
PDF: 6 pages
Proc. SPIE 3236, 17th Annual BACUS Symposium on Photomask Technology and Management, (12 February 1997); doi: 10.1117/12.301230
Show Author Affiliations
H. Ufuk Alpay, DuPont Photomasks, Inc. (United States)
James L. Wood, DuPont Photomasks, Inc. (United States)
Franklin D. Kalk, DuPont Photomasks, Inc. (United States)

Published in SPIE Proceedings Vol. 3236:
17th Annual BACUS Symposium on Photomask Technology and Management
James A. Reynolds; Brian J. Grenon, Editor(s)

© SPIE. Terms of Use
Back to Top